Woorenol, a Novel Sesquineolignan with a Unique Spiro Skeleton, from the Rhizomes of Coptis japonica var. dissecta

Kazuko Y oshikawa,* Hiroshi Kinoshita, and Shigenobu Arihara
Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima 770, J apan

Received December 13, 1996^{*}
Woorenol (1) has been isolated from the rhizomes of Coptis japonica var. dissecta. The structure of 1 was proposed on the basis of extensive NMR experiments. Woorenol is the first sesquineolignan with a spiro skeleton.

The rhizomes of Coptis species are used in China as a crude drug for digestive-system problems. ${ }^{1}$ In previous contributions, we reported the isolation and structure determination of six neol ignans, four hemiterpenoid glucosides, two phenylpropanoid glucosides, and a flavonoid glycoside ${ }^{2,3}$ from the rhizomes of Coptis japonica var. dissecta Nakai (Ranundaceae). Further investigation of the phenylpropanoid constituents of this plant has revealed a new sesquineol ignan with a spiro skeleton, woorenol (1). The structure of $\mathbf{1}$ was elucidated by chemical and spectroscopic methods, 2D-NMR techniques being especially helpful. This paper deals with the isolation and structure elucidation of $\mathbf{1}$.

The EtOH extract obtained from the fresh rhizomes of Coptis japonica var. dissecta was passed through an Amberlist 15 column to give a non-alkaloid fraction. Repeated separation of this fraction by ordinary-phase (SiO_{2}) and reversed-phase (ODS) col umn chromatography furnished a new neolignan named woorenol ($\mathbf{1}$). ${ }^{1} \mathrm{H}-$ ${ }^{1} \mathrm{H}$ COSY, ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY, HMBC, and ROESY experiments provided sufficient information to determine the complete structure of $\mathbf{1}$. Woorenol (1), $[\alpha]_{D}+93.6^{\circ}$ (c 1.6, MeOH), was obtained as a pale yellow solid. The molecular formula of $\mathbf{1}$ was established as $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{13}$ on the basis of HRFABMS and corresponds to 13 degrees of unsaturation. The IR spectrum of $\mathbf{1}$ showed the presence of hydroxy ($3420 \mathrm{~cm}^{-1}$, br), enone carbonyl (1660 and $1620 \mathrm{~cm}^{-1}$), and aromatic groups (1600, 1460 cm^{-1}). The ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum in $\mathrm{CD}_{3} \mathrm{OD}$ revealed 32 signals; these were sorted, by DEPT experiments, into $\mathrm{MeO} \times 5, \mathrm{OCH}_{2} \times 3, \mathrm{O}-\mathrm{CH} \times 3, \mathrm{CH}_{2} \times 2, \mathrm{CH} \times 1, \mathrm{C} \times$ $1,=\mathrm{CH} \times 6,=\mathrm{C} \times 10$ and $\mathrm{C}=\mathrm{O} \times 1$ (Table 1). Expansion of the formula to $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{O}_{8} \cdot(\mathrm{OMe})_{5}$ suggested that $\mathbf{1}$ was a sesquilignan. One of the $\mathrm{C}_{6}-\mathrm{C}_{3}$ moieties was assigned as a hydroxydihydroconiferyl alcohol (fragment A in the formula), since the MS indicated deavage of the molecular ion into a fragment of m / z

[^0]

Figure 1. Diagnostic EIMS fragments ion (m / z) of $\mathbf{1}$.
197 (15\%). Thus, in the ${ }^{1} \mathrm{H}-{ }^{1} \mathrm{H}$ COSY spectrum of $\mathbf{1}$, coupling between a 2 H triplet at $\delta 2.52\left(\mathrm{H}_{2}-7\right)$ and a 2 H multiplet at δ 1.76-1.77 ($\mathrm{H}_{2}-8$) was apparent, as was a correlation with another 2 H triplet located at $\delta 3.54\left(\mathrm{H}_{2}-\right.$ 9). These proton resonances corresponded to carbon peaks at $\delta 33.1$ (C-7), 35.3 (C-8), and 62.2 (C-9), respectively, in the ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum of $\mathbf{1}$, revealing the propyl alcohol portion of a hydroxydihydroconiferyl alcohol moiety. The remaining signals for an aromatic moiety indicated two sets of meta-coupled doublets at $\delta 6.29(\mathrm{H}-2)$ and $6.32(\mathrm{H}-6)$ and a 3 H singlet due to one methoxy group at $\delta 3.65$ (3-O-Me) and the NOE between $\mathrm{H}-2 / \mathrm{H}_{2}-7$ and the methoxy group.

The second $\mathrm{C}_{6}-\mathrm{C}_{3}$ moiety was deduced from the observation of the fragment ion at $\mathrm{m} / \mathrm{z} 406$ (28\%) formed by the cleavage b that $\mathbf{1}$ has a hydroxysinapyl alcohol moiety. The existence of fragment B in $\mathbf{1}$ was revealed by a 1 H double triplet at $\delta 2.80 \mathrm{~J}=9.1,6.0$ $\mathrm{Hz})$, two sets of geminal-coupled double doublets at δ 3.49 and $3.53(\mathrm{~J}=11.8,6.0 \mathrm{~Hz})$, a 6 H singlet at $\delta 3.89$, a 1 H doubleat at $\delta 5.15$, and a 2 H singlet at $\delta 6.88$. The COSY data showed a correlation between the resonance at $\delta 5.15\left(\mathrm{H}-7^{\prime}\right)$ and the methine proton at $\delta 2.80\left(\mathrm{H}-8^{\prime}\right)$. The $\mathrm{H}-8^{\prime}$ proton was correlated to the unequivalent methylene pair at $\delta 3.49$ and $3.53\left(\mathrm{H}_{2}-9^{\prime}\right)$, establishing a C-7'-C-9' network. The remaining 6 H singlet at δ 3.89 (3-O-Me and $5-\mathrm{O}-\mathrm{Me}$) and 2 H singlet at $\delta 6.88$ (H2^{\prime} and $\mathrm{H}-6^{\prime}$) indicated a symmetrical structure for fragment B. The HMBC experiment revealed longrange couplings from $\mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$ to $\mathrm{C}-7^{\prime}$, indicating that the positions of two methoxy groups were at $\mathrm{C}-3^{\prime}$ and $\mathrm{C}-\mathrm{5}^{\prime}$.
The last $\mathrm{C}_{6}-\mathrm{C}_{3}$ moiety was assigned to the fragment C (Figure 1) observed at $\mathrm{m} / \mathrm{z} 239$ in the MS. The UV spectrum showed $\lambda_{\text {max }}(\mathrm{MeOH}) 277.5 \mathrm{~nm}(\log \Delta \epsilon 4.14)$, characteristic of a para-blocked α, α-dimethoxy cyclo-

Table 1. ${ }^{1} \mathrm{H}$ - and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ Data (150 and 600 MHz), including CH Correlations for Woorenol (1) in $\mathrm{CD}_{3} \mathrm{OD}^{\mathrm{a}}$

carbon	${ }^{13} \mathrm{C}$	mult ${ }^{\text {b }}$	${ }^{1} \mathrm{H}$	mult	HMBC (H to C)
1	140.0	S	6.29	$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=1.9 \mathrm{~Hz})$	$\begin{aligned} & \mathrm{H}-2, \mathrm{H}-6, \mathrm{H}-8 \\ & 3-\mathrm{O}-\mathrm{Me}, \mathrm{H}-6, \mathrm{H}-7 \\ & \mathrm{H}-2,3-\mathrm{O}-\mathrm{Me} \\ & \mathrm{H}-2, \mathrm{H}-6 \end{aligned}$
2	105.0	d			
3	154.5	S			
4	131.3	S			
5	152.2	S			
6	109.9	d	6.32	(1H, d, J $=1.9 \mathrm{~Hz}$)	H-2, H-6
7	33.1	t	2.52	(1H, dd, J $=1.9 \mathrm{~Hz}$)	$\mathrm{H}-2, \mathrm{H}-7, \mathrm{H}-8, \mathrm{H}-9$
8	35.3	t	ca 1.76	(1H, m)	H-7, H-9
			ca 1.77	(1H, m)	H-7, H-9
9	62.2	t	3.54	$(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=6.3 \mathrm{~Hz})$	H-7, H-8
3-O-Me	56.1	q	3.65	$(3 \mathrm{H}, \mathrm{s})$	
1	134.9	S			H-2', H-6', H-7', H-8'
$2 \prime$	104.1	d	6.88	(1H, s)	$3^{\prime}-\mathrm{O}-\mathrm{Me}, \mathrm{H}-6^{\prime}, \mathrm{H}-7^{\prime}$
3'	149.4	S			H-2', 3'-O-Me
4^{\prime}	135.9	S			H-2', H-6'
5'	149.4	S			5'-O-Me, H-6'
6^{\prime}	104.1	d	6.88	(1H, s)	H-2', 5'-O-Me, H-7'
$7{ }^{\prime}$	83.2	d	5.15	$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=9.1 \mathrm{~Hz})$	H-2', H-6', H-8', H-9'
8^{\prime}	62.7	t	2.80	$(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=9.1,6.0 \mathrm{~Hz})$	H-7', H-9', H-2', H-7'
9	60.4	t	3.49	$(1 \mathrm{H}, \mathrm{dd}, \mathrm{~J}=11.8,6.0 \mathrm{~Hz})$	H-7', $\mathrm{H}-8^{\prime}$
			3.53	$(1 \mathrm{H}, \mathrm{dd}, \mathrm{~J}=11.8,6.0 \mathrm{~Hz})$	H-7', H-8'
$3^{\prime}, 5^{\prime}-\mathrm{O}-\mathrm{Me}$	56.8	q	3.89	$(6 \mathrm{H}, \mathrm{s})$	
$1^{\prime \prime}$	54.2	S			H-8', H-9', H-8'
$2^{\prime \prime}$	115.7	d	6.02	$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz})$	H-8', H-6"', H-7', 4'-O-Me
3"	153.2	S			H-2", 3'-O-Me
4"	179.5	S			H-2', H-6"
5"	152.5	S			5"-O-Me, H-6"
$6^{\prime \prime}$	121.1	d	6.38	(1H, d, J $=2.5 \mathrm{~Hz}$)	H-8', H-2', H-7', $5^{\prime \prime}$-O-Me
$7{ }^{\prime \prime}$	86.2	d	4.87	$(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=7.1 \mathrm{~Hz})$	H-7', H-2', $\mathrm{H}-6^{\prime \prime}, \mathrm{H}-8^{\prime \prime}, \mathrm{H}-9^{\prime \prime}$
8'	81.1	d	4.09	(1H, dt, J $=7.1,2.5 \mathrm{~Hz}$)	H-7', H-9'
$9^{\prime \prime}$	61.1	t	3.62	(1H, dd, J $=12.1,2.5 \mathrm{~Hz}$)	H-7'
			3.83	(1H, dd, J $=12.1,2.5 \mathrm{~Hz}$)	H-7"
3'-O-Me	55.8	q	3.56	(3H, s)	
5'-O-Me	55.8	q	3.82	(3H, s)	

[^1]

Figure 2. NOESY correlations for 1.
hexadienone. ${ }^{4}$ The W-type long-range coupling displayed between 1H doublet at $\delta 6.02$ ($\mathrm{H}-2^{\prime \prime}$) and 1H doublet $\delta 6.38\left(\mathrm{H}-6^{\prime \prime}\right)$, which were coupled to carbon peaks at $\delta 115.7$ (C-2") and 121.0 ($\mathrm{C}-6^{\prime \prime}$), respectively, in ${ }^{1} \mathrm{H}-{ }^{13} \mathrm{C}$ COSY spectrum of $\mathbf{1}$, confirmed that the cyclohexadiene was an approximately planar form. Moreover, the ${ }^{1} \mathrm{H}$-NMR spectrum due to cyclohexadiene moiety showed two 3 H singlet protons at $\delta 3.56$ and 3.82. The $\mathrm{C}-\mathrm{H}$ long-range correlations between the $\mathrm{H}-2^{\prime \prime} / \mathrm{C}-8^{\prime}, \mathrm{C}-3^{\prime \prime}$ and $\mathrm{C}-4^{\prime \prime}, \mathrm{H}-6^{\prime \prime} / \mathrm{C}-8^{\prime}, \mathrm{C}-4^{\prime \prime}$ and $\mathrm{C}-5^{\prime \prime}$, O-Me at $\delta 3.56^{\prime \prime} / \mathrm{C}-3^{\prime \prime}$, and O-Me at $\delta 3.82 / \mathrm{C}-5^{\prime \prime}$, confirmed the existence of a para-blocked α, α^{\prime}-dimethoxy cyclohexadienone in fragment C . TheCOSY signals for the remaining C-3 units (propane part) showed a correlation between a 1 H doublet at $\delta 4.87$ ($\mathrm{H}-\mathbf{7}^{\prime \prime}$) and a 1 H doublet at $\delta 4.09$ ($\mathrm{H}-8^{\prime \prime}$), which was further correlated to a pair of double doublets at $\delta 3.62$ and 3.83 ($\mathrm{H}_{2}-9^{\prime \prime}$), indicating the presence of glycerol-like portion of fragment C.

The HMBC experiment revealed long-range couplings from the $\mathrm{C}-8^{\prime}$ proton to $\mathrm{C}-2^{\prime \prime}$ and $\mathrm{C}-6^{\prime \prime}$, from the $\mathrm{C}-2^{\prime \prime}$ proton to $\mathrm{C}-8^{\prime}$ and $\mathrm{C}-7^{\prime \prime}$, from C-6" proton to $\mathrm{C}-8^{\prime}$ and $\mathrm{C}-7^{\prime \prime}$, and from $\mathrm{C}-7^{\prime \prime}$ proton to $\mathrm{C}-1^{\prime \prime}, \mathrm{C}-2^{\prime \prime}$ and $\mathrm{C}-6^{\prime \prime}$, indicating a linkage between $\mathrm{C}-8^{\prime}$ and $\mathrm{C}-1^{\prime \prime}$. Additional

HMBC correlations between $\mathrm{H}-7^{\prime}$ and $\mathrm{C}-7^{\prime \prime}$ established the connectivity between $\mathrm{C}-7^{\prime}$ and $\mathrm{C}-7^{\prime \prime}$ via an ether linkage, confirming the spiro linkage between fragments B and C. The fragment ion at $\mathrm{m} / \mathrm{z} 406$ showed that the connection between C-4' and C-4 or C-5 was via an ether linkage. To elucidate the location of the oxygen bridge in structure A, a methyl ether (2) was prepared from $\mathbf{1}$ by treatment with diazomethane. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}$ showed signals due to two aromatic and two methoxy protons on ring A at the same position, indicating that the junction between the two units of 1 was at C-4 and C-4' via an ether bridge. Thus, the planar structure of $\mathbf{1}$ was determined. The relative stereochemistry of woorenol was established by NOESY experiments (Figure 1). The NOEs between $\mathrm{H}-7^{\prime} / \mathrm{H}-2^{\prime}$ and $\mathrm{H}-2^{\prime \prime}, \mathrm{H}-8^{\prime} / \mathrm{H}-6^{\prime}, \mathrm{H}-6^{\prime \prime}$ and $\mathrm{H}-7^{\prime \prime}, \mathrm{H}-2^{\prime \prime} / \mathrm{H}-9^{\prime}$ and $\mathrm{H}-8^{\prime \prime}$ and $\mathrm{H}-6^{\prime \prime} / \mathrm{H}-7^{\prime \prime}$ established the $\mathrm{C}-7^{2} \mathrm{R}^{*}, \mathrm{C}-8^{\prime} \mathrm{S}^{*}$, and $\mathrm{C}-7$ " S^{*}. Thus, the structure of woorenol was suggested to be $\mathbf{1}$. To the best of our knowledge, $\mathbf{1}$ is the first sesquineolignan with a spiro skeleton.

Experimental Section

General Experimental Procedures. Thefollowing instruments were used: J ASCO FT/IR-5300 (IR), Shimadzu UV-160 (UV), J ASCO DIP-1000 polarimeter (optical rotation), J EOL J MS-HX-100 mass spectrometer (HRMS), and Varian UNITY 600 spectrometer or JEOL JNM-GX-400FT NMR (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR).

Plant Material. The rhizomes of Coptis japonica var. dissecta cultivated in Sannan-cho, Hyougo Prefecture, were collected in December 1993. A voucher specimen is deposited in the herbarium of the Department of Pharmacognosy, Tokushima Bunri University, Tokushima, J apan.

Extraction and Isolation. The fresh rhizomes (5.0 kg) of C. japonica var. dissecta were extracted with absolute EtOH at room temperature for 3 weeks. The $20 \% \mathrm{EtOH}$ solution obtained by adding $\mathrm{H}_{2} \mathrm{O}$ was passed through an Amberlist 15 column to give the non-alkaloid fraction and then an Amberlite XAD-2 column to include $\mathrm{H}_{2} \mathrm{O}$-sol uble substances. The Amberlite XAD-2 column was eluted with MeOH to give a neutral and phenolic eluate. The MeOH eluate $(23 \mathrm{~g})$ was subjected to Si gel column chromatography with $\mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH}-\mathrm{H}_{2} \mathrm{O}(25$: 10:0.1) to give four fractions (1-4). Fraction $2(8 \mathrm{~g})$ was subjected to HPLC on ODS ($12 \% \mathrm{CH}_{3} \mathrm{CN}$) to give woorenol (1, 3 mg).

Woorenol (1): pale yellow solid; $[\alpha]^{25} \mathrm{D}+93.6^{\circ}$ (c 1.6, MeOH); FT-IR (dry film) 3420 (br), 1660, 1620, 1600, $1515,1460,1270,1230,1120 \mathrm{~cm}^{-1}$; UV (MeOH) $\lambda_{\text {max }}(\mathrm{log}$ є) 207 (5.01), 230 (4.52), 277.5 (4.14); CD $\Delta \epsilon+6.28$ (279 nm) (c 0.0248, MeOH); HRFABMS, obsd m/ z 632.2460, $\mathrm{C}_{32} \mathrm{H}_{40} \mathrm{O}_{13}$ calcd m/z 632.2466, ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR, see Table 1.

O-Methylwoorenol (2). Woorenol (10 mg) in 1.0 of MeOH was treated with $\mathrm{CH}_{2} \mathrm{~N}_{2}$ in $\mathrm{Et}_{2} \mathrm{O}$ for one day at $4^{\circ} \mathrm{C}$. The residue after solvent removal was purified by preparative HPLC on C18 to give compound (2): pale yellow solid; $[\alpha]^{25} \mathrm{D}+108^{\circ}$ (c 0.52, MeOH); FT-IR (dry film) 3400 (br), 1660, 1625, 1600, 1515, 1460, 1270, 1230, 1120, cm^{-1}; UV (MeOH) $\lambda_{\text {max }}(\log \epsilon) 206$ (4.95), 232 (4.50), 278 (4.00); HRFABMS, obsd m/ z 646.2615, $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{O}_{13} \mathrm{calcd} \mathrm{m} / \mathrm{z} 646.2623$; ${ }^{1} \mathrm{H}$ NMR (CD $\left.{ }_{3} \mathrm{OD}\right) \delta$ ca. 1.79 (1H, m, H-8), ca. 1.81 (1H, m, H-8), 2.62 (2H, t, J
$\left.=7.7 \mathrm{~Hz}, \mathrm{H}_{2}-6\right), 2.78\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=8.7,5.8 \mathrm{~Hz}, \mathrm{H}-8^{\prime}\right)$, $3.50\left(1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=11.8,5.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime}\right), 3.55(2 \mathrm{H}, \mathrm{t}, \mathrm{J}=$ $7.3 \mathrm{~Hz}, \mathrm{H}_{2}-9$), 3.57 (1 H , dd, J $=11.8,5.8 \mathrm{~Hz}, \mathrm{H}-9^{\prime}$), 3.57 ($3 \mathrm{H}, \mathrm{s}, 3^{\prime \prime}-\mathrm{O}-\mathrm{Me}$), 3.62 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,2.5 \mathrm{~Hz}, \mathrm{H}-9^{\prime \prime}$), 3.73 ($6 \mathrm{H}, \mathrm{s}, 3$ and $5-\mathrm{O}-\mathrm{Me}$), 3.83 ($1 \mathrm{H}, \mathrm{dd}, \mathrm{J}=12.0,2.5$ $\left.\mathrm{Hz}, \mathrm{H}-9^{\prime \prime}\right), 3.84$ (3H, s, $5^{\prime \prime}-\mathrm{O}-\mathrm{Me}$), 3.89 ($6 \mathrm{H}, \mathrm{s}, 3^{\prime}$ and $5^{\prime}-$ O-Me), $4.09\left(1 \mathrm{H}, \mathrm{dt}, \mathrm{J}=7.7,2.5 \mathrm{~Hz}, \mathrm{H}-8^{\prime \prime}\right), 4.87(1 \mathrm{H}, \mathrm{d}$, $\left.\mathrm{J}=7.7 \mathrm{~Hz}, \mathrm{H}-7^{\prime \prime}\right), 5.20\left(1 \mathrm{H}, \mathrm{d}, \mathrm{J}=8.7 \mathrm{~Hz}, \mathrm{H}-7^{\prime}\right), 6.09$ ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}-6^{\prime \prime}$), 6.40 ($1 \mathrm{H}, \mathrm{d}, \mathrm{J}=2.5 \mathrm{~Hz}, \mathrm{H}-2^{\prime \prime}$), 6.49 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2$ and $\mathrm{H}-6$), 6.94 ($2 \mathrm{H}, \mathrm{s}, \mathrm{H}-2^{\prime}$ and $\mathrm{H}-6^{\prime}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 33.4$ (C-7), 35.4 (C-8), 54.4 (C-1"), 55.9 ($3^{\prime \prime}$ or $5^{\prime \prime}-\mathrm{O}-\mathrm{Me}$), 56.0 ($5^{\prime \prime}$ or $3^{\prime \prime}-\mathrm{O}-\mathrm{Me}$), 56.7 (3 and 5-O-Me), 56.8 (3^{\prime} and $5^{\prime}-\mathrm{O}-\mathrm{Me}$), 60.6 (C-9'), 61.4 (C-9"), 62.2 (C-9), 62.7 (C-8'), 80.9 (C-8"), 83.0 (C-7'), 85.9 (C$\left.7^{\prime \prime}\right), 104.1$ (C-2' and C-6'), 106.8 (C-2 and C-6), 115.2 (C$\left.2^{\prime \prime}\right), 121.3$ (C-6"), 132.2 (C-4), 138.2 (C-4'), 140.0 (C-1'), 140.3 (C-1), 152.6 (C-5"), 153.3 (C-3"), 154.7 (C-3, 5, 3^{\prime} and $\left.C-5^{\prime}\right)$, 179.6 (C-4").

Acknowledgment. We are grateful to Ms. Y. Kan for measurements of NMR spectra and Ms. I. Okamoto for measurements of mass spectra.

References and Notes

(1) Chinese materia medica; J iangsu New Medicinal College, Ed.; Shanghai People's Publ. House: Shanghai, 1977; pp 2022-2030.
(2) Yoshikawa, K.; Kinoshita, H.; Arihara, S. Chem. Pharm. Bull. 1995, 43, 578-581.
(3) Yoshikawa, K.; Kinoshita, H.; Arihara, S. Nat. Med., in press.
(4) Daniels, P.; Erdtman, H.; Nishimura, K.; Norin, T. J . Chem. Soc., Chem. Commun. 1972, 246-247.
NP9700127

[^0]: * To whom correspondence should be addressed. Phone: 0886-229611. FAX: 0886-55-3051.
 ${ }^{\otimes}$ Abstract published in Advance ACS Abstracts, May 1, 1997.

[^1]: ${ }^{\mathrm{a}} \delta$ in ppm. ${ }^{\mathrm{b}}$ Multiplity in DEPT.

